Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1381155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650737

RESUMO

Kinetoplastid pathogens including Trypanosoma brucei, T. cruzi, and Leishmania species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in T. brucei that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing in T. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic form T. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages.

2.
Mol Biochem Parasitol ; 256: 111596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742784

RESUMO

RNA editing generates mature mitochondrial mRNAs in T. brucei by extensive uridine insertion and deletion at numerous editing sites (ESs) as specified by guide RNAs (gRNAs). The editing is performed by three RNA Editing Catalytic Complexes (RECCs) which each have a different endonuclease in addition to 12 proteins in common resulting in RECC1 that is specific for deletion ESs and RECC2 and RECC3 that are specific for insertion ESs. Thus, different RECCs are required for editing of mRNA sequence regions where single gRNAs specify a combination of insertion and deletion ESs. We investigated how the three different RECCs might edit combinations of insertion and deletion ESs that are specified by single gRNAs by testing whether their endonuclease compositions are stable or dynamic during editing. We analyzed in vivo BirA* proximity labeling and found that the endonucleases remain associated with their set of common RECC proteins during editing when expressed at normal physiological levels. We also found that overexpression of endonuclease components resulted in minor effects on RECCs but did not affect growth. Thus, the protein stoichiometries that exist within each RECC can be altered by perturbations of RECC expression levels. These results indicate that editing of consecutive insertion and deletion ESs occurs by successive engagement and disengagement of RECCs, i.e., is non-processive, which is likely the case for consecutive pairs of insertion or deletion ESs. This clarifies the nature of the complex patterns of partially edited mRNAs that occur in vivo.


Assuntos
RNA , Trypanosoma brucei brucei , RNA/genética , RNA/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Edição de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
RNA ; 29(10): 1591-1609, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474258

RESUMO

The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life-cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multiprotein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing, and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations, most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the zinc fingers (ZFs), an intrinsically disordered region (IDR), and several within or near the carboxy-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing, whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.


Assuntos
RNA , Trypanosoma brucei brucei , RNA/genética , Trypanosoma brucei brucei/metabolismo , Edição de RNA , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mutação , RNA de Protozoário/genética , RNA de Protozoário/metabolismo
4.
bioRxiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131796

RESUMO

The gRNA directed U-insertion and deletion editing of mitochondrial mRNAs that is essential in different life cycle stages for the protozoan parasite Trypanosoma brucei is performed by three similar multi-protein catalytic complexes (CCs) that contain the requisite enzymes. These CCs also contain a common set of eight proteins that have no apparent direct catalytic function, including six that have an OB-fold domain. We show here that one of these OB-fold proteins, KREPA3 (A3), has structural homology to other editing proteins, is essential for editing and is multifunctional. We investigated A3 function by analyzing the effects of single amino acid loss of function mutations most of which were identified by screening bloodstream form (BF) parasites for loss of growth following random mutagenesis. Mutations in the ZFs, an intrinsically disordered region (IDR) and several within or near the C-terminal OB-fold domain variably impacted CC structural integrity and editing. Some mutations resulted in almost complete loss of CCs and its proteins and editing whereas others retained CCs but had aberrant editing. All but a mutation which is near the OB-fold affected growth and editing in BF but not procyclic form (PF) parasites. These data indicate that multiple positions within A3 have essential functions that contribute to the structural integrity of CCs, the precision of editing and the developmental differences in editing between BF and PF stages.

5.
PLoS Pathog ; 19(5): e1011051, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37195999

RESUMO

Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Animais , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Vacinação , Interferons , Imunidade , Esporozoítos
6.
RNA ; 29(2): 228-240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400448

RESUMO

Mitochondrial gene expression in trypanosomes requires numerous multiprotein complexes that are unique to kinetoplastids. Among these, the most well characterized are RNA editing catalytic complexes (RECCs) that catalyze the guide RNA (gRNA)-specified insertion and deletion of uridines during mitochondrial mRNA maturation. This post-transcriptional resequencing of mitochondrial mRNAs can be extensive, involving dozens of different gRNAs and hundreds of editing sites with most of the mature mRNA sequences resulting from the editing process. Proper coordination of the editing with the cognate gRNAs is attributed to RNA editing substrate-binding complexes (RESCs), which are also required for RNA editing. Although the precise mechanism of RESC function is less well understood, their affinity for binding both editing substrates and products suggests that these complexes may provide a scaffold for RECC catalytic processing. KRGG1 has been shown to bind RNAs, and although affinity purification co-isolates RESC complexes, its role in RNA editing remains uncertain. We show here that KRGG1 is essential in BF parasites and required for normal editing. KRGG1 repression results in reduced amounts of edited A6 mRNA and increased amounts of edited ND8 mRNA. Sequence and structure analysis of KRGG1 identified a region of homology with RESC6, and both proteins have predicted tandem helical repeats that resemble ARM/HEAT motifs. The ARM/HEAT-like region is critical for function as exclusive expression of mutated KRGG1 results in growth inhibition and disruption of KRGG1 association with RESCs. These results indicate that KRGG1 is critical for RNA editing and its specific function is associated with RESC activity.


Assuntos
Edição de RNA , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Nucleic Acids Res ; 50(17): 10123-10139, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095119

RESUMO

Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.


Assuntos
Proteínas de Protozoários/metabolismo , Ribonuclease III/metabolismo , Trypanosoma brucei brucei , Endonucleases/genética , Endonucleases/metabolismo , RNA/metabolismo , Edição de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Uridina/metabolismo
8.
PLoS Pathog ; 18(2): e1010282, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108339

RESUMO

Immunization with radiation-attenuated sporozoites (RAS) can confer sterilizing protection against malaria, although the mechanisms behind this protection are incompletely understood. We performed a systems biology analysis of samples from the Immunization by Mosquito with Radiation Attenuated Sporozoites (IMRAS) trial, which comprised P. falciparum RAS-immunized (PfRAS), malaria-naive participants whose protection from malaria infection was subsequently assessed by controlled human malaria infection (CHMI). Blood samples collected after initial PfRAS immunization were analyzed to compare immune responses between protected and non-protected volunteers leveraging integrative analysis of whole blood RNA-seq, high parameter flow cytometry, and single cell CITEseq of PBMCs. This analysis revealed differences in early innate immune responses indicating divergent paths associated with protection. In particular, elevated levels of inflammatory responses early after the initial immunization were detrimental for the development of protective adaptive immunity. Specifically, non-classical monocytes and early type I interferon responses induced within 1 day of PfRAS vaccination correlated with impaired immunity. Non-protected individuals also showed an increase in Th2 polarized T cell responses whereas we observed a trend towards increased Th1 and T-bet+ CD8 T cell responses in protected individuals. Temporal differences in genes associated with natural killer cells suggest an important role in immune regulation by these cells. These findings give insight into the immune responses that confer protection against malaria and may guide further malaria vaccine development. Trial registration: ClinicalTrials.gov NCT01994525.


Assuntos
Imunidade , Inflamação , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adulto , Animais , Anopheles/parasitologia , Feminino , Humanos , Imunização/métodos , Mordeduras e Picadas de Insetos/imunologia , Malária Falciparum/parasitologia , Masculino , Mosquitos Vetores/parasitologia , Linfócitos T/imunologia , Vacinação/métodos , Vacinas Atenuadas/imunologia
9.
Elife ; 112022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35060479

RESUMO

Background: In a phase 3 trial in African infants and children, the RTS,S/AS01 vaccine (GSK) showed moderate efficacy against clinical malaria. We sought to further understand RTS,S/AS01-induced immune responses associated with vaccine protection. Methods: Applying the blood transcriptional module (BTM) framework, we characterized the transcriptomic response to RTS,S/AS01 vaccination in antigen-stimulated (and vehicle control) peripheral blood mononuclear cells sampled from a subset of trial participants at baseline and month 3 (1-month post-third dose). Using a matched case-control study design, we evaluated which of these 'RTS,S/AS01 signature BTMs' associated with malaria case status in RTS,S/AS01 vaccinees. Antigen-specific T-cell responses were analyzed by flow cytometry. We also performed a cross-study correlates analysis where we assessed the generalizability of our findings across three controlled human malaria infection studies of healthy, malaria-naive adult RTS,S/AS01 recipients. Results: RTS,S/AS01 vaccination was associated with downregulation of B-cell and monocyte-related BTMs and upregulation of T-cell-related BTMs, as well as higher month 3 (vs. baseline) circumsporozoite protein-specific CD4+ T-cell responses. There were few RTS,S/AS01-associated BTMs whose month 3 levels correlated with malaria risk. In contrast, baseline levels of BTMs associated with dendritic cells and with monocytes (among others) correlated with malaria risk. The baseline dendritic cell- and monocyte-related BTM correlations with malaria risk appeared to generalize to healthy, malaria-naive adults. Conclusions: A prevaccination transcriptomic signature associates with malaria in RTS,S/AS01-vaccinated African children, and elements of this signature may be broadly generalizable. The consistent presence of monocyte-related modules suggests that certain monocyte subsets may inhibit protective RTS,S/AS01-induced responses. Funding: Funding was obtained from the NIH-NIAID (R01AI095789), NIH-NIAID (U19AI128914), PATH Malaria Vaccine Initiative (MVI), and Ministerio de Economía y Competitividad (Instituto de Salud Carlos III, PI11/00423 and PI14/01422). The RNA-seq project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under grant number U19AI110818 to the Broad Institute. This study was also supported by the Vaccine Statistical Support (Bill and Melinda Gates Foundation award INV-008576/OPP1154739 to R.G.). C.D. was the recipient of a Ramon y Cajal Contract from the Ministerio de Economía y Competitividad (RYC-2008-02631). G.M. was the recipient of a Sara Borrell-ISCIII fellowship (CD010/00156) and work was performed with the support of Department of Health, Catalan Government grant (SLT006/17/00109). This research is part of the ISGlobal's Program on the Molecular Mechanisms of Malaria which is partially supported by the Fundación Ramón Areces and we acknowledge support from the Spanish Ministry of Science and Innovation through the 'Centro de Excelencia Severo Ochoa 2019-2023' Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.


Assuntos
Leucócitos Mononucleares , Vacinas Antimaláricas/imunologia , Malária Falciparum , Transcriptoma , Vacinas Sintéticas/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Pré-Escolar , Ensaios Clínicos Fase III como Assunto , Humanos , Lactente , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Moçambique , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tanzânia , Transcriptoma/genética , Transcriptoma/imunologia
10.
Front Immunol ; 13: 1042741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591224

RESUMO

Background: Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods: To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results: RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions: This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.


Assuntos
Malária , Esporozoítos , Animais , Humanos , Linfócitos T CD8-Positivos , Imunidade , Interferons , Leucócitos Mononucleares , Malária/prevenção & controle , Vacinação/métodos , Ensaios Clínicos como Assunto
11.
Malar J ; 20(1): 308, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243763

RESUMO

BACKGROUND: Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. METHODS: Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. RESULTS: Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1-3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. CONCLUSIONS: In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários/sangue , Ensaios Clínicos como Assunto , Humanos , Vacinas Antimaláricas/administração & dosagem , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Esporozoítos/genética , Esporozoítos/imunologia , Transcrição Gênica , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/uso terapêutico
12.
Trends Parasitol ; 36(4): 337-355, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32191849

RESUMO

Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.


Assuntos
Edição de RNA/fisiologia , RNA Mitocondrial/metabolismo , RNA de Protozoário/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , RNA Mitocondrial/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética
13.
RNA ; 25(9): 1150-1163, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31171708

RESUMO

Multiprotein editosomes catalyze gRNA-specified insertion and deletion of uridines to create functional mitochondrial mRNAs in Trypanosoma brucei Three functionally distinct editosomes are distinguished by their single KREN1, KREN2, or KREN3 RNase III endonuclease and, respectively, KREPB8, KREPB7, and KREPB6 partner proteins. These endonucleases perform the first catalytic step of editing, cleaving mRNA in diverse mRNA/gRNA heteroduplex substrates. We identified divergent and likely noncatalytic RNase III domains in KREPB4, KREPB5, KREPB6, KREPB7, KREPB8, KREPB9, and KREPB10 editosome proteins. Because known RNase III endonuclease functional domains are dimeric, the editing endonucleases may form heterodimers with one or more of these divergent RNase III proteins. We show here using conditional null cell lines that KREPB6, KREPB7, and KREPB8 are essential in both procyclic form (PF) and bloodstream (BF) cells. Loss of these proteins results in growth defects and loss of editing in vivo, as does mutation of their RNase III domain that is predicted to prevent dimerization. Loss of KREPB6, KREPB7, or KREPB8 also dramatically reduces cognate endonuclease abundance, as does the RNase III mutation, indicating that RNase III interactions with their partner proteins stabilize the endonucleases. The phenotypic consequences of repression are more severe in BF than in PF, indicating differences in endonuclease function between developmental stages that could impact regulation of editing. These results suggest that KREPB6, KREPB7, and KREPB8 form heterodimers with their respective endonucleases to perform mRNA cleavage. We also present a model wherein editosome proteins with divergent RNase III domains function in substrate selection via enzyme-pseudoenzyme interactions.


Assuntos
Proteínas de Protozoários/genética , Edição de RNA/genética , Ribonuclease III/genética , Trypanosoma brucei brucei/genética , Animais , Linhagem Celular , Endonucleases/genética , Mutação/genética , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , RNA Mitocondrial/genética , RNA de Protozoário/genética , Uridina/genética
14.
PLoS One ; 13(6): e0199392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29920562

RESUMO

Malaria continues to be one of mankind's most devastating diseases despite the many and varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is the development of effective vaccines. Controlled human malaria infection (CHMI) is an invaluable tool for vaccine efficacy assessment and investigation of early immunological and molecular responses against Plasmodium falciparum infection. Here, we investigated gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with 2.5x104 aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria® PfSPZ Challenge). A total of 2,758 genes were identified as differentially expressed following CHMI. Transcriptional changes were most pronounced on day 5 after inoculation, during the clinically silent liver phase. A secondary analysis, grouping the volunteers according to their prepatent period duration, identified 265 genes whose expression levels were linked to time of blood stage parasitemia detection. Gene modules associated with these 265 genes were linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent period in each individual is linked to magnitude and timing of early gene expression changes after ID CHMI.


Assuntos
Malária Falciparum/genética , Parasitemia/sangue , Plasmodium falciparum/isolamento & purificação , Transcriptoma/genética , Proteínas Sanguíneas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Parasitemia/genética , Plasmodium falciparum/patogenicidade , Voluntários
15.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359194

RESUMO

Editosomes are the multiprotein complexes that catalyze the insertion and deletion of uridines to create translatable mRNAs in the mitochondria of kinetoplastids. Recognition and cleavage of a broad diversity of RNA substrates in vivo require three functionally distinct RNase III-type endonucleases, as well as five additional editosome proteins that contain noncatalytic RNase III domains. RNase III domains have recently been identified in the editosome accessory proteins KREPB9 and KREPB10, suggesting a role related to editing endonuclease function. In this report, we definitively show that KREPB9 and KREPB10 are not essential in either bloodstream-form parasites (BF) or procyclic-form parasites (PF) by creating null or conditional null cell lines. While preedited and edited transcripts are largely unaffected by the loss of KREPB9 in both PF and BF, loss of KREPB10 produces distinct responses in BF and PF. BF cells lacking KREPB10 also lack edited CYb, while PF cells have increased edited A6, RPS12, ND3, and COII after loss of KREPB10. We also demonstrate that mutation of the RNase III domain of either KREPB9 or KREPB10 results in decreased association with ~20S editosomes. Editosome interactions with KREPB9 and KREPB10 are therefore mediated by the noncatalytic RNase III domain, consistent with a role in endonuclease specialization in Trypanosoma brucei. IMPORTANCETrypanosoma brucei is a protozoan parasite that causes African sleeping sickness. U insertion/deletion RNA editing in T. brucei generates mature mitochondrial mRNAs. Editing is essential for survival in mammalian hosts and tsetse fly vectors and is differentially regulated during the parasite life cycle. Three multiprotein "editosomes," typified by exclusive RNase III endonucleases that act at distinct sites, catalyze editing. Here, we show that editosome accessory proteins KREPB9 and KREPB10 are not essential for mammalian blood- or insect-form parasite survival but have specific and differential effects on edited RNA abundance in different stages. We also characterize KREPB9 and KREPB10 noncatalytic RNase III domains and show they are essential for editosome association, potentially via dimerization with RNase III domains in other editosome proteins. This work enhances the understanding of distinct editosome and accessory protein functions, and thus differential editing, during the parasite life cycle and highlights the importance of RNase III domain interactions to editosome architecture.

16.
Nucleic Acids Res ; 45(8): 4667-4686, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334821

RESUMO

RNA editing is an essential post-transcriptional process that creates functional mitochondrial mRNAs in Kinetoplastids. Multiprotein editosomes catalyze pre-mRNA cleavage, uridine (U) insertion or deletion, and ligation as specified by guide RNAs. Three functionally and compositionally distinct editosomes differ by the mutually exclusive presence of the KREN1, KREN2 or KREN3 endonuclease and their associated partner proteins. Because endonuclease cleavage is a likely point of regulation for RNA editing, we elucidated endonuclease specificity in vivo. We used a mutant gamma ATP synthase allele (MGA) to circumvent the normal essentiality of the editing endonucleases, and created cell lines in which both alleles of one, two or all three of the endonucleases were deleted. Cells lacking multiple endonucleases had altered editosome sedimentation on glycerol gradients and substantial defects in overall editing. Deep sequencing analysis of RNAs from such cells revealed clear discrimination by editosomes between sites of deletion versus insertion editing and preferential but overlapping specificity for sites of insertion editing. Thus, endonuclease specificities in vivo are distinct but with some functional overlap. The overlapping specificities likely accommodate the more numerous sites of insertion versus deletion editing as editosomes collaborate to accurately edit thousands of distinct editing sites in vivo.


Assuntos
Endonucleases/genética , Proteínas de Protozoários/genética , Edição de RNA , RNA Mensageiro/genética , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Sequência de Bases , Endonucleases/metabolismo , Deleção de Genes , Glicerol/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Protozoários/metabolismo , Clivagem do RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial , RNA de Protozoário/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Transfecção , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
17.
Proc Natl Acad Sci U S A ; 113(42): E6476-E6485, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27708162

RESUMO

Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei Editing is catalyzed by three distinct ∼20S editosomes that have a common set of 12 proteins, but are typified by mutually exclusive RNase III endonucleases with distinct cleavage specificities and unique partner proteins. Previous studies identified a network of protein-protein interactions among a subset of common editosome proteins, but interactions among the endonucleases and their partner proteins, and their interactions with common subunits were not identified. Here, chemical cross-linking and mass spectrometry, comparative structural modeling, and genetic and biochemical analyses were used to define the molecular architecture and subunit organization of purified editosomes. We identified intra- and interprotein cross-links for all editosome subunits that are fully consistent with editosome protein structures and previously identified interactions, which we validated by genetic and biochemical studies. The results were used to create a highly detailed map of editosome protein domain proximities, leading to identification of molecular interactions between subunits, insights into the functions of noncatalytic editosome proteins, and a global understanding of editosome architecture.


Assuntos
Proteínas de Protozoários/metabolismo , Edição de RNA , RNA de Protozoário/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Biologia Computacional/métodos , Endonucleases/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteoma , Proteômica/métodos , Proteínas de Protozoários/química , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes
18.
Mol Cell Biol ; 35(23): 3945-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370513

RESUMO

KREPB5 is an essential component of ∼ 20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼ 20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs.


Assuntos
Proteínas de Protozoários/metabolismo , Edição de RNA , Ribonuclease III/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Ribonuclease III/química , Ribonuclease III/genética , Alinhamento de Sequência , Trypanosoma brucei brucei/metabolismo
19.
J Biol Chem ; 290(41): 24914-31, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26304125

RESUMO

Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages.


Assuntos
Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Edição de RNA , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sangue/parasitologia , Linhagem Celular , Resistência a Medicamentos/genética , Estágios do Ciclo de Vida/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Ribonuclease III/química , Ribonuclease III/metabolismo , Tetraciclina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo
20.
PLoS Negl Trop Dis ; 9(1): e3404, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25568942

RESUMO

Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.


Assuntos
Genoma de Protozoário , Filogenia , Proteínas de Protozoários/metabolismo , Trypanosoma/classificação , Trypanosoma/genética , Regulação da Expressão Gênica , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Proteínas de Protozoários/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...